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Mathematics of Flight: Glide Slope II  
Students will develop a basic understanding of math applications used in flight. This includes the glide slope or glide angle. 
Using trigonometry, students will solve a series of real world problems. (Two in a series of two). 

 
LESSON PLAN 

 
Lesson Objectives 

 
The students will: 
• Be introduced to formulas used in flight, related to 

navigation and aircraft performance. 
• Learn to calculate the glide slope using trigonometry. 
• Learn about the proportionality of the drag and lift 

coefficients, and how they are then related to the glide 
slope. 

 
Goal 
In this lesson, students should learn to use trigonometry 
to derive formulas to solve for desired quantities. Using 
this, in conjunction with algebraic manipulation, 
comfortability should be attained by practice. Students 
should also develop a physical understanding for drag 
and lift coefficients. 

 
Background 
A glider is a special kind of aircraft that has no engine. 
The Wright brothers perfected the design of the first 
airplane and gained piloting experience throughout a 
series of glider flights from 1900 to 1903. During World 
War II, gliders such as the WACO CG-4 were towed aloft 
by C-47 and C-46 aircraft then cut free to glide over many 
miles. 
 
If a glider is in a steady (constant velocity, no 
acceleration) descent the forces on the plane can be 
considered equal. In a steady descent, the angle of the 
descent remains the same, and the forces acting on the 
aircraft can be assumed to be balanced. The three forces 
we consider are drag, lift and weight. The angle that the 
aircraft makes with the ground is the glide angle. See the 
aside image for a simplified free body diagram.  
 
The green arrow represents the force of drag, D. 
The blue arrow represents the force of weight, W. 
The red arrow represents that force of lift. L. 
The angle indicates the glide angle (α, in degrees). 

Grade Level:     9-12 
Ohio Learning Standards/Science (2018) 
Expectation of Learning 
Nature of Science  

 Physical Science 
PS.FM.2 Forces and Motion 
PS.FM.3 Dynamics (Fnet=0) 
Physics 
P.F.1 Newton’s Laws applied 
P.F.5 Air resistance and drag 
P.F.6 Forces in two dimensions 
Ohio Learning Standards/Mathematics 
(2017) 

 Vector and Matrix Quantities 
 N.VM.1 Recognize Vector quantities 
 N.VM.3 Solve problems using vectors 
 N.VM.4 Add and subtract vectors 
 N.VM.8 Multiply Matrices of apt dimensions 
 N.VM.11 Understand matrix multiplication of 
vectors as linear transformations 
 Geometry 
 G.CO.1 Know geometric terminology 
 G.CO.5 Understand transformations of figures 
 G.CO.10 Prove and apply theorems (triangles) 
 Algebra 
 A.REI.5 Solve 2D systems of equations 
 Functions 
F.TF.8 Prove Trig. Identities 
F.TF.9 Use Trig. Identities to solve problems 

Materials Required: 
• Paper 
• Writing Utensil 
• Scientific or graphing calculator 

September 2020 
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Activity Summary 
From the three forces which are acting on the glider, we have multiple approaches when trying to solve the problem. 
Each approach will yield the same answer, but in some ways, personal preference can dictate how one may find their 
way to the solution of these problems. Two methods are outlined below: 1) using the standard coordinate system 2) 
applying a transform to rotate into a shifted coordinate system. 
 
Staying in the Standard Coordinate System 
 

 
 
In the standard coordinate system, it is possible to decompose each of the vector forces into the respective x and y 
components. The designation is that the “Horizontal” text rests at 0°. 
 

𝐿𝐿�⃑ = �𝐿𝐿 cos(90 − 𝛼𝛼)
𝐿𝐿 sin(90 − 𝛼𝛼) �      𝐷𝐷��⃑ = �𝐷𝐷 cos(180 − 𝛼𝛼)

𝐷𝐷 sin(180 − 𝛼𝛼)�       𝑊𝑊���⃑ = �𝑊𝑊 cos(270)
𝑊𝑊 sin(270)� = � 0

−𝑊𝑊� 

 
Since the forces assumed to be balanced, the sum of forces must be equal to zero in both the x and the y directions. 
That is: 

𝐿𝐿�⃑ + 𝐷𝐷��⃑ + 𝑊𝑊���⃑ = �00� 
 
Using some trigonometric identities, it is left to the reader to arrive at the following formulas. 
 

𝐿𝐿 cos(𝛼𝛼) + 𝐷𝐷 sin(𝛼𝛼) = 𝑊𝑊 
 

𝐿𝐿 sin(𝛼𝛼) = 𝐷𝐷 cos (𝛼𝛼) 
 

𝐷𝐷
𝐿𝐿

= tan(𝛼𝛼) 
 
In these examples, the L, D, and W, without the arrow indicate the magnitude of the vector, and 𝐿𝐿�⃑ ,𝐷𝐷��⃑ ,𝑊𝑊���⃑  indicate the 
vector for lift, drag, and weight respectively. 
 
Solving Using a Rotated Coordinate System 
 
In some systems, it may be easier to solve if we first apply a transformation to the system. Suppose we rotate the 
coordinate system by α degrees counterclockwise. This is illustrated by the figure on the next page. 
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See Exercise 5 for a detailed example for applying this transformation. This transformation helps us with this 
example, as it simplifies the components. Using our modified coordinate system, we can determine the new 
horizontal and new vertical components of our vectors. Modifications indicated in red, due to the rotation 
operation). 
 

𝐿𝐿′���⃑ = �𝐿𝐿 cos(90 − 𝛼𝛼 + 𝛼𝛼)
𝐿𝐿 sin(90 − 𝛼𝛼 + 𝛼𝛼) � = �0𝐿𝐿�    𝐷𝐷′���⃑ = �𝐷𝐷 cos(180 − 𝛼𝛼 + 𝛼𝛼)

𝐷𝐷 sin(180 − 𝛼𝛼 + 𝛼𝛼)� = �−𝐷𝐷0 �     𝑊𝑊′�����⃑ = �𝑊𝑊 cos(270 + 𝛼𝛼)
𝑊𝑊 sin(270 + 𝛼𝛼)� = � 𝑊𝑊 sin(𝛼𝛼)

−𝑊𝑊 cos(𝛼𝛼) � 

 
These vectors, however, are in an alternate coordinate system (up is no longer up!) so care must be taken when 
indicating the direction of the force. 
Since the forces assumed to be balanced, the sum of forces must be equal to zero in both the x and the y directions. 
That is: 

𝐿𝐿′���⃑ + 𝐷𝐷′���⃑ + 𝑊𝑊′�����⃑ = �00� 
 
Using some trigonometric identities, it is left to the reader to arrive at the following formulas. 
 

𝐷𝐷 = 𝑊𝑊 sin(𝛼𝛼) 
 

𝐿𝐿 = 𝑊𝑊 cos (𝛼𝛼) 
 

𝐷𝐷
𝐿𝐿

= tan(𝛼𝛼) 
 
Extension to Lift and Drag Coefficients 
 
We can determine an additional method to find the drag to lift ratio (or the tan(α) quantity) which is by 
determination of the drag and lift coefficients. There are specific formulas for each of these quantities. The lift 
coefficient, cL, is unit-less and related to lift via the following equation. 
 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =
1
2
𝑐𝑐𝐿𝐿 ∗ 𝜌𝜌 ∗ 𝑣𝑣2 ∗ 𝐴𝐴 

 
In this equation, the lifting force is given in Newtons (N), ρ is the air density (in kg/m3), v is the velocity of the 
aircraft (in m/s), and A is the area of the lifting body (e.g. wing, in m2). Often times, the lifting coefficient is 
experimentally determined, and is used to factor many complications of flight. 
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9° 

 
 
In comparison, the equation for the drag coefficient, cD, is very similar. The drag coefficient functions similarly to 
lift coefficient, where it acts as a simplification of complex forces to a single unit-less variable.  
 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =
1
2
𝑐𝑐𝐷𝐷 ∗ 𝜌𝜌 ∗ 𝑣𝑣2 ∗ 𝐴𝐴 

 
In this equation, the drag force is given in Newtons (N), ρ is the air density (in kg/m3), v is the velocity of the 
aircraft (in m/s), and A is the area of the lifting body (e.g. wing, in m2). Often times, the drag coefficient is 
experimentally determined. 
If we then choose to determine the previous quantity of D/L, we can take our formulas as given and simplify. 
 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

=  
1
2 𝑐𝑐𝐷𝐷 ∗ 𝜌𝜌 ∗ 𝑣𝑣

2 ∗ 𝐴𝐴
1
2 𝑐𝑐𝐿𝐿 ∗ 𝜌𝜌 ∗ 𝑣𝑣

2 ∗ 𝐴𝐴
=
𝑐𝑐𝐷𝐷
𝑐𝑐𝐿𝐿

= tan (𝛼𝛼) 

 
The drag to lift ratio (D/L) and its inverse (L/D) help to indicate the efficiency of an aircraft. In general, the higher 
the L/D the lower the glide angle, and the greater the distance that a glider can travel across the ground for a given 
change of height. 
 
Example 1: The 1901 Wright Glider has a mass of 44.44 kg, and during a test “flight” glided at an angle of 9° for 
a glide length of 91.44 m. Using this information draw the free body diagram, determine the height of the flight, 
𝐿𝐿�⃑ ,𝐷𝐷��⃑ ,𝑊𝑊���⃑ , and the D/L ratio. (use g = 9.81 m/s2). Use both methods of the standard and rotated coordinate system 
Solution: 

Graphically, this is the information give that is relevant to 
determining the height of the glider. Using trigonometry, we 
notice:  

sin(9°) =
ℎ

91.44 𝑚𝑚
 

Thus, h = 91.44m *sin (9°) = 14.30m is the height that the glider 
descended from. 
 
We also need to determine the force due to weight from the mass 
of the flyer. Given the mass of the glider is 44.44kg we determine 
the weight force to be 44.44 kg * 9.81 m/s2 = 436.0 N downward. 
  
Using the conventional coordinate axis, we have the following free 
body diagram. (See the left). 
Since we have two unknowns, we can use a system of equations to 
solve this using the following formulas. 

𝐿𝐿 cos(9°) + 𝐷𝐷 sin(9°) = 436.0𝑁𝑁 
𝐷𝐷
𝐿𝐿

= tan(𝛼𝛼) → 𝐷𝐷 = 𝐿𝐿 tan (9°)  
Thus by substitution 

𝐿𝐿 cos(9°) + 𝐿𝐿 tan(9°) sin(9°) = 436.0 𝑁𝑁 
Rearranging and solving yields 

𝐿𝐿 =
436.0𝑁𝑁

cos(9°) + tan(9°) sin (9°)
= 430.6 𝑁𝑁 

And subsequently   
𝐷𝐷 =  430.6 𝑁𝑁 ∗ tan(9°) =  68.21 𝑁𝑁 𝑠𝑠𝑠𝑠 𝐷𝐷 𝐿𝐿� = 0.1584  

𝐷𝐷��⃑  
9° 

x 

y 

𝑊𝑊���⃑  = 436.0 N 

𝐿𝐿�⃑  
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𝐿𝐿�⃑ = �430.6𝑁𝑁 cos(81°)
430.6𝑁𝑁 sin(81°)� = �67.36𝑁𝑁

425.3𝑁𝑁�   𝐷𝐷��⃑ = �68.21𝑁𝑁 cos(171°)
68.21𝑁𝑁 sin(171°)� = [−67.36𝑁𝑁

10.7𝑁𝑁 ]      𝑊𝑊���⃑ = � 0
−436 𝑁𝑁� 

 
Using the rotated coordinate system, the problem actually 
becomes simpler. 
Given that we have the weight force of 436.0 N, we can use 
the following formulas to directly calculate L and D 

𝐷𝐷 = 𝑊𝑊 sin(𝛼𝛼)  𝐷𝐷𝑎𝑎𝑎𝑎 𝐿𝐿 = 𝑊𝑊 cos(𝛼𝛼) 
Inputting the values from the problem statement … 

𝐷𝐷 = 436.0𝑁𝑁 sin(9°) = 68.21 𝑁𝑁 
And  

𝐿𝐿 = 436.0𝑁𝑁 ∗ cos(9°) = 430.6 𝑁𝑁 
So the D/L ratio can be similarly calculated as 0.1584. 
Finding the modified vectors, 𝐿𝐿′���⃑ ,𝐷𝐷′���⃑ ,𝑊𝑊′�����⃑  
 

𝐿𝐿′���⃑ = � 0
430.6 𝑁𝑁�    𝐷𝐷′���⃑ = �−68.21 𝑁𝑁

0 �     𝑊𝑊′�����⃑ = � 436 𝑁𝑁 sin(9°)
−436 𝑁𝑁 cos(9°) � = � 68.21 𝑁𝑁

−430.6 𝑁𝑁� 

 
This concludes this example. For use with the examples on the attached worksheet, here are a list of useful 
trigonometric identities. 
 

tan 𝐷𝐷 =
sin𝐷𝐷
cos 𝐷𝐷

              cot 𝐷𝐷 =
cos 𝐷𝐷
sin𝐷𝐷

            sec 𝐷𝐷 =
1

cos 𝐷𝐷
              csc𝐷𝐷 =

1
sin𝐷𝐷

 
 

sin2 𝐷𝐷 + cos2 𝐷𝐷 = 1 
 

sin(−𝐷𝐷) =  − sin(𝐷𝐷)                cos(−𝐷𝐷) = cos(𝐷𝐷)                       tan(−𝐷𝐷) =  −tan (𝐷𝐷) 
 

 
 

cos𝐷𝐷 = sin(90° − 𝐷𝐷)                sin 𝐷𝐷 = cos (90° − 𝐷𝐷) 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐿𝐿′���⃑  

Y’ 

X’ 

𝑊𝑊′�����⃑   

9° 

𝐷𝐷��⃑  
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Name___________________ 
 

Glide Slope II Activity Sheet 
1) The 1902 Wright Glider has a mass of 53.06 kg, and during a test “flight” glided at an angle of 7° for a 

glide length of 152.4 m. Using this information draw the free body diagram, determine the height of the 
flight, 𝐿𝐿�⃑ ,𝐷𝐷��⃑ ,𝑊𝑊���⃑ , and the D/L ratio. (use g = 9.81 m/s2). For this problem, use the standard (non-rotated) 
coordinate system to solve. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2) Verify your answers in problem 1 by solving the same problem, using a rotated coordinate system (solve 
𝐿𝐿′���⃑ ,𝐷𝐷′���⃑ ,𝑊𝑊′�����⃑  too). Which method do you think is easier? 
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 Name___________________ 
3) The CG-4 Hadrian glider has a loaded mass of 3402 kg and a total wing area of 83.6 m2, and during a test 

“flight” glided at an angle of 4.33°, with an initial height of 7315 m, constant velocity of 26.82 m/s. 
Assume the air density is 0.7364 kg/m3, and g=9.81 m/s2. From this information, determine the glide 
length, the magnitude and direction of the drag, the direction and magnitude of the lift, and the D/L ratio. 
 
 
 
 
 
 
 
 
 
 

4) Using the information in the previous example, determine cD and cL for the CG-4 Hadrian Glider. 
 
 
 
 
 
 

5) For a challenge! The rotation that was applied to change the coordinates, R(θ), is actually given by a 
matrix, and maps (or more intuitively, drags) all of the points in the coordinate plane about the origin 
counterclockwise by some angle θ. The matrix that performs this is given below: 

𝑅𝑅 = �cos(𝜃𝜃) − sin(𝜃𝜃)
sin(𝜃𝜃) cos(𝜃𝜃) � 

When we “apply” a transformation to a vector, the following expression is yielded: R*𝒙𝒙��⃑  
For exercise 5, use matrix multiplication to prove that rotating the vectors 𝐿𝐿�⃑ ,𝐷𝐷��⃑ ,𝑊𝑊���⃑  via R(α)*𝑳𝑳��⃑ , R(α)*𝑫𝑫��⃑  and 
R(α)*𝑾𝑾����⃑  yields 𝐿𝐿′���⃑ ,𝐷𝐷′���⃑ ,𝑊𝑊′�����⃑ . 

 
 
 
 
 
 
 
 
References: 
Lift: https://www.grc.nasa.gov/www/k-12/airplane/liftco.html  
Drag Coefficient: https://www.grc.nasa.gov/www/k-12/airplane/drageq.html 
Rotation Transformation: http://planning.cs.uiuc.edu/node98.html 
Trig identities: https://www2.clarku.edu/faculty/djoyce/trig/identities.html 
C-47: https://www.nationalmuseum.af.mil/Visit/Museum-Exhibits/Fact-Sheets/Display/Article/196271/douglas-c-
47d-skytrain/ 
WACO Glider: https://www.nationalmuseum.af.mil/Visit/Museum-Exhibits/Fact-
Sheets/Display/Article/196272/waco-cg-4a-hadrian/ 

https://www.grc.nasa.gov/www/k-12/airplane/liftco.html
https://www.grc.nasa.gov/www/k-12/airplane/drageq.html
http://planning.cs.uiuc.edu/node98.html
https://www2.clarku.edu/faculty/djoyce/trig/identities.html
https://www.nationalmuseum.af.mil/Visit/Museum-Exhibits/Fact-Sheets/Display/Article/196271/douglas-c-47d-skytrain/
https://www.nationalmuseum.af.mil/Visit/Museum-Exhibits/Fact-Sheets/Display/Article/196271/douglas-c-47d-skytrain/
https://www.nationalmuseum.af.mil/Visit/Museum-Exhibits/Fact-Sheets/Display/Article/196272/waco-cg-4a-hadrian/
https://www.nationalmuseum.af.mil/Visit/Museum-Exhibits/Fact-Sheets/Display/Article/196272/waco-cg-4a-hadrian/
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Name____KEY___________ 
 

Glide Slope II Activity Sheet 
1) The 1902 Wright Glider has a mass of 53.06 kg, and during a test “flight” glided at an angle of 7° for a 

glide length of 152.4 m. Using this information draw the free body diagram, determine the height of the 
flight, 𝐿𝐿�⃑ ,𝐷𝐷��⃑ ,𝑊𝑊���⃑ , and the D/L ratio. (use g = 9.81 m/s2). For this problem, use the standard (non-rotated) 
coordinate system to solve. 

ℎ = 18.57 𝑚𝑚 
 

𝐿𝐿�⃑ = � 62.96 𝑁𝑁
512.75 𝑁𝑁� , 𝐿𝐿 = 516.6 𝑁𝑁 

 
𝐷𝐷��⃑ = �−62.96 𝑁𝑁

7.73 𝑁𝑁 � ,𝐷𝐷 = 63.44 𝑁𝑁 
 

𝑊𝑊���⃑ = � 0 𝑁𝑁
−520.5 𝑁𝑁� ,𝑊𝑊 = 520.5 𝑁𝑁 

 
𝐷𝐷
𝐿𝐿

= 0.1228 
 
 
 
 
 

2) Verify your answers in problem 1 by solving the same problem, using a rotated coordinate system (solve 
𝐿𝐿′���⃑ ,𝐷𝐷′���⃑ ,𝑊𝑊′�����⃑  too). Which method do you think is easier? 

ℎ = 18.57 𝑚𝑚 
 

𝐿𝐿′���⃑ = � 0 𝑁𝑁
516.6 𝑁𝑁� , 𝐿𝐿 = 516.6 𝑁𝑁 

 
𝐷𝐷′���⃑ = �−63.43 𝑁𝑁

0 𝑁𝑁 � ,𝐷𝐷 = 63.43 𝑁𝑁 
 

𝑊𝑊′�����⃑ = � 63.43 𝑁𝑁
−516.6 𝑁𝑁� ,𝑊𝑊 = 520.5 𝑁𝑁 

 
𝐷𝐷
𝐿𝐿

= 0.1228 
  Often times, students will prefer this method, as there are less steps, but the intuition of 
rotation may be difficult. Emphasis should be made to indicate, also, the modified vectors should be 
designated on their figures or states as “7 degrees clockwise from the axis” 
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 Name______KEY________ 
3) The CG-4 Hadrian glider has a loaded mass of 3402 kg and a total wing area of 83.6 m2, and during a test 

“flight” glided at an angle of 4.33° with an initial height of 7315 m and constant velocity of 26.82 m/s. 
Assume the air density is 0.7364 kg/m3, and g=9.81 m/s2. From this information, determine the glide 
length, the magnitude and direction of the drag, the direction and magnitude of the lift, and the D/L ratio. 
Glide length = 96 890m. L = 33.28 kN directed at 86.67° (see below for vector notation) D = 2.520 kN 
directed at 176.67° D/L ratio is 0.07572. 

 
𝐿𝐿�⃑ = �2.512 𝑘𝑘𝑁𝑁

33.18 𝑘𝑘𝑁𝑁�       𝐷𝐷��⃑ = �−2.512 𝑘𝑘𝑁𝑁
0.190 𝑘𝑘𝑁𝑁 �  

 
 
 

4) Using the information in the previous example, determine cD and cL for the CG-4 Hadrian Glider. 
 

CD = 0.1138 , CL = 1.503 
 
 
 
 

5) For a challenge! The rotation that was applied to change the coordinates, R(θ), is actually given by a 
matrix, and maps (or more intuitively, drags) all of the points in the coordinate plane about the origin 
counterclockwise by some angle θ. The matrix that performs this is given below: 

𝑅𝑅 = �cos(𝜃𝜃) − sin(𝜃𝜃)
sin(𝜃𝜃) cos(𝜃𝜃) � 

When we “apply” a transformation to a vector, the following expression is yielded: R*𝒙𝒙��⃑  
For exercise 5, use matrix multiplication to prove that rotating the vectors 𝐿𝐿�⃑ ,𝐷𝐷��⃑ ,𝑊𝑊���⃑  via R(α)*𝑳𝑳��⃑ , R(α)*𝑫𝑫��⃑  and 
R(α)*𝑾𝑾����⃑  yields 𝐿𝐿′���⃑ ,𝐷𝐷′���⃑ ,𝑊𝑊′�����⃑ . 
 

𝑹𝑹(𝜶𝜶°) ∗ 𝑳𝑳��⃑ = �cos(𝛼𝛼) − sin(𝛼𝛼)
sin(𝛼𝛼) cos(𝛼𝛼) � ∗ �

𝐿𝐿 cos(90 − 𝛼𝛼)
𝐿𝐿 sin(90 − 𝛼𝛼)� = �𝐿𝐿 cos(𝛼𝛼) cos(90 − 𝛼𝛼) − 𝐿𝐿 sin(𝛼𝛼) sin(90 − 𝛼𝛼)

𝐿𝐿 sin(𝛼𝛼) cos(90 − 𝛼𝛼) + 𝐿𝐿 cos(𝛼𝛼) sin(90 − 𝛼𝛼)�   

 
𝑢𝑢𝑠𝑠𝐿𝐿𝑎𝑎𝐷𝐷 𝑐𝑐𝑠𝑠𝑠𝑠(𝐴𝐴 + 𝐵𝐵) = 𝑐𝑐𝑠𝑠𝑠𝑠(𝐴𝐴)𝑐𝑐𝑠𝑠𝑠𝑠(𝐵𝐵) − 𝑠𝑠𝐿𝐿𝑎𝑎(𝐴𝐴)𝑠𝑠𝐿𝐿𝑎𝑎(𝐵𝐵) ; 𝐷𝐷𝑎𝑎𝑎𝑎 𝑠𝑠𝐿𝐿𝑎𝑎(𝐴𝐴 + 𝐵𝐵) = 𝑠𝑠𝐿𝐿𝑎𝑎(𝐴𝐴)𝑐𝑐𝑠𝑠𝑠𝑠(𝐵𝐵) + 𝑐𝑐𝑠𝑠𝑠𝑠(𝐴𝐴)𝑠𝑠𝐿𝐿𝑎𝑎(𝐵𝐵) 

 

𝑹𝑹(𝜶𝜶°) ∗ 𝑳𝑳��⃑ = �𝐿𝐿(𝑐𝑐𝑠𝑠𝑠𝑠(𝛼𝛼 + 90 − 𝛼𝛼))
𝐿𝐿(sin(𝛼𝛼 + 90 − 𝛼𝛼))  � = �𝐿𝐿 cos(90°)

𝐿𝐿 sin(90°) � = �0𝐿𝐿� 

The other solutions can be gathered using similar identities. 
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The students will:

• Be introduced to formulas used in flight related to navigation and 
aircraft performance.

• Learn to calculate the glide slope using trigonometry.
• Vector components and forces in vector form

• Learn about the proportionality of the drag and lift coefficients, and 
how they are then related to the glide slope.

Glide Slope II 



A glider is a special kind of aircraft that has no engine. The Wright 
brothers perfected the design of the first airplane and gained piloting 
experience through a series of glider flights from 1900 to 1903.

Glide Slope II 

With Wilbur Wright at the controls, Dan Tate, left, and Edward C. Huffaker launch the 1901 Wright Glider at Kitty Hawk, N.C.
Credit: Library of Congress, courtesy National Air and Space Museum, Smithsonian Institution



During World War II, gliders such as the WACO CG-4 were towed aloft 
by C-47 and C-46 aircraft then cut free to glide over many miles.

Glide Slope II 



If a glider is in a steady (constant velocity, no acceleration) descent, the 
forces acting on the plane can be considered equal. The flight path 
intersects the ground at an angle (α) called the glide angle. If we know 
the distance flown and the altitude change, the glide angle can be 
calculated using trigonometry.

The tangent (tan) of the glide angle (α) is equal to the change in height 
(h) divided by the distance flown (d):

tan(α) = h / d

Glide Slope II 



d = horizontal distance flown
h = change in height
α = glide angle

From trigonometry: tan(α) = h/d

Glide Slope II

h

d
α



There are three forces acting on the glider; lift, weight, and drag. The 
weight of the glider is given by the symbol "W" and is directed vertical, 
toward the center of the earth. The weight is then perpendicular to the 
horizontal red line drawn parallel to the ground and through the center 
of gravity.

The drag of the glider is designated by "D" and acts along the flight 
path opposing the motion.

Lift, designated "L" acts perpendicular to the flight path. Using some 
geometry theorems on angles, perpendicular lines, and parallel lines, 
we see the glide angle " α " also defines the angle between the lift and 
the vertical, and between the drag and the horizontal.

Glide Slope II 



L = Lift
D = Drag
W = Weight
α = glide angle

Glide Slope II

h

d
α

D
L

W

Vertical

Horizontal

Vertical Equation: L cos(α) + D sin(α) = W
Horizontal Equation: L sin(α) = D cos(α)

sin(α)   =   tan(α)   =   D
cos(α)                         L

*Assuming velocity is constant



Assuming that the forces are balanced (no acceleration of the glider), we can write 
two vector component equations for the forces.

𝐿𝐿 = 𝐿𝐿 cos 90 − 𝛼𝛼
𝐿𝐿 sin 90 − 𝛼𝛼 𝐷𝐷 = 𝐷𝐷 cos 180 − 𝛼𝛼

𝐷𝐷 sin 180 − 𝛼𝛼 𝑊𝑊 = 𝑊𝑊 cos 270
𝑊𝑊 sin 270 = 0

−𝑊𝑊
Since the forces assumed to be balanced, the sum of forces must be equal to zero in 
both the x and the y directions. That is:

𝐿𝐿 + 𝐷𝐷 + 𝑊𝑊 = 0
0

So we end up with a system of equations, after using some trig. identities
𝐿𝐿 cos 𝛼𝛼 + 𝐷𝐷 sin 𝛼𝛼 = 𝑊𝑊

𝐿𝐿 sin 𝛼𝛼 = 𝐷𝐷 cos(𝛼𝛼)
The second equation can also be written as the following

𝐷𝐷
𝐿𝐿

= tan(𝛼𝛼)

Glide Slope II 



The lift equation:

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =
1
2
𝐶𝐶𝑙𝑙 ∗ 𝜌𝜌 ∗ 𝑣𝑣2 ∗ 𝐴𝐴

Lift coefficient (cL) is a unitless coefficient that factors in many of the 
intricacies in flight. In practice, it is experimentally determined.

In this equation, the lifting force is given in Newtons (N), ρ is the air 
density (in kg/m3), v is the velocity of the aircraft (in m/s), and A is the 
area of the lifting body (e.g. wing, in m2).

Glide Slope II 



The drag equation:

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =
1
2
𝐶𝐶𝐷𝐷 ∗ 𝜌𝜌 ∗ 𝑣𝑣2 ∗ 𝐴𝐴

Drag coefficient (cD) is a unitless coefficient that factors in many of the 
intricacies in flight. In practice, it is experimentally determined.

In this equation, the drag force is given in Newtons (N), ρ is the air 
density (in kg/m3), v is the velocity of the aircraft (in m/s), and A is the 
area of the lifting body (e.g. wing, in m2).

Glide Slope II 



cl = Lift coefficient
cd = Drag 
coefficient

Glide Slope II

h

d
a

D
L

W

Vertical

Horizonal

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

=
1
2 𝑐𝑐𝐷𝐷 ∗ 𝜌𝜌 ∗ 𝑣𝑣

2 ∗ 𝐴𝐴
1
2 𝑐𝑐𝐿𝐿 ∗ 𝜌𝜌 ∗ 𝑣𝑣

2 ∗ 𝐴𝐴
=
𝑐𝑐𝐷𝐷
𝑐𝑐𝐿𝐿

= tan(𝛼𝛼)



If we use algebra to re-arrange the horizontal force equation we find 
that the drag divided by the lift is equal to the sine of the glide angle 
divided by the cosine of the glide angle. This ratio of trigonometric 
functions is equal to the tangent of the angle.

D / L = sin(𝛼𝛼) / cos(𝛼𝛼) = tan(𝛼𝛼)

We can use the drag equation and the lift equation to relate the glide 
angle to the drag coefficient (cD) and lift coefficient (cL) that the Wrights 
measured in their wind tunnel tests.

D / L = cD / cL = tan(𝛼𝛼)

Glide Slope II 



This is a replica of the wind tunnel designed and built by the Wright Brothers in the fall 
of 1901 to test airfoil designs. The blower fan, driven by an overhead belt, produced a 
25 to 35 mph wind for testing the lift of various planes and curved surfaces. 
Aerodynamic tables derived from these tests were vital to the successful design of the 
Wright 1903 Kitty Hawk airplane. Inside the tunnel is a model of a Wright lift balance 
used to measure the lift of a test surface. The wind tunnel replica was constructed 
under the personal supervision of Orville Wright prior to World War II.

Glide Slope II 

Wright Brothers 
1901 Wind Tunnel
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During the operation of the drag balance the brothers made 
measurements of the effects of wing design on glide angle through the 
drag to lift ratio.

The inverse of the drag to lift ratio is the L/D ratio which is an efficiency 
factor for aircraft design.

The higher the L/D, the lower the glide angle, and the greater the 
distance that a glider can travel across the ground for a given change in 
height.

Glide Slope II 



Glide Slope II 

With Wilbur Wright at the controls, Dan Tate, left, and Edward C. Huffaker launch the 1901 Wright Glider at Kitty Hawk, N.C.
Credit: Library of Congress, courtesy National Air and Space Museum, Smithsonian Institution



Glide Slope II 

Wilbur Wright gliding in 1902. The Wrights added a vertical tail to their glider to deal with the
lateral control problems experienced in 1901. The more graceful appearance of the 1902 
machine over the previous gliders is evident in this picture.
Credit: National Air and Space Museum, Smithsonian Institution



Glide Slope II 
Example: The 1901 Wright Glider has a mass of 44.44 kg, and during a test 
“flight” glided at an angle of 9° for a glide length of 91.44 m. Using this 
information draw the free body diagram, determine the height of the flight, 
𝐿𝐿,𝐷𝐷,𝑊𝑊, and the D/L ratio. (use g = 9.81 m/s2). 

Lastly, confirm that 𝐿𝐿 + 𝐷𝐷 + 𝑊𝑊 = 0
0 (the sum of forces is zero)

h

9o

D
L

W



Glide Slope II 
Example: The 1901 Wright Glider has a mass of 44.44 kg, and during a test 
“flight” glided at an angle of 9° for a glide length of 91.44 m. Using this 
information draw the free body diagram, determine the height of the flight, 
𝐿𝐿,𝐷𝐷,𝑊𝑊, and the D/L ratio. (use g = 9.81 m/s2). 

9o

D
L

436.0 N

W = 44.44 kg * 9.81 m/s2 = 436.0 N

sin 9° =
ℎ

91.44 𝑚𝑚

Height of the glider = 14.30 m

14
.3

0 
m
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D

L
Vertical

Horizontal

436.0 N

𝐿𝐿 cos 9° + 𝐷𝐷 sin 9° = 436.0𝑁𝑁
𝐷𝐷
𝐿𝐿

= tan(𝛼𝛼) → 𝐷𝐷 = 𝐿𝐿 tan(9°)
Thus by substitution

𝐿𝐿 cos 9° + 𝐿𝐿 tan 9° sin 9° = 436.0 𝑁𝑁

Rearranging and solving yields

𝐿𝐿 =
436.0𝑁𝑁

cos 9° + tan 9° sin(9°)
= 430.6 𝑁𝑁

𝐿𝐿 cos 𝛼𝛼 + 𝐷𝐷 sin 𝛼𝛼 = 𝑊𝑊

𝐿𝐿 sin 𝛼𝛼 = 𝐷𝐷 cos(𝛼𝛼)

𝐷𝐷
𝐿𝐿

= tan(𝛼𝛼)
𝐷𝐷 = 430.6 𝑁𝑁 ∗ tan 9° = 68.21 𝑁𝑁 𝑠𝑠𝑠𝑠 �𝐷𝐷 𝐿𝐿 = 0.1584



Glide Slope II 
68.21 N

430.6 N
y

x

436.0 N

𝐿𝐿 = 𝐿𝐿 cos 90 − 𝛼𝛼
𝐿𝐿 sin 90 − 𝛼𝛼

𝐷𝐷 = 𝐷𝐷 cos 180 − 𝛼𝛼
𝐷𝐷 sin 180 − 𝛼𝛼

𝑊𝑊 = 𝑊𝑊 cos 270
𝑊𝑊 sin 270 = 0

−𝑊𝑊

𝐿𝐿 = 𝐿𝐿 cos 90 − 9
𝐿𝐿 sin 90 − 9

Given 𝛼𝛼 = 9o

𝐿𝐿 = 430.6𝑁𝑁 cos 81°
430.6𝑁𝑁 sin 81° = 67.36𝑁𝑁

425.3𝑁𝑁

𝐷𝐷 = 𝐷𝐷 cos 180 − 9
𝐷𝐷 sin 180 − 9

𝐷𝐷 = 68.21𝑁𝑁 cos 171°
68.21𝑁𝑁 sin 171° = −67.36𝑁𝑁

10.7𝑁𝑁

𝑊𝑊 = 0
−436 𝑁𝑁



Glide Slope II −67.36𝑁𝑁
10.7𝑁𝑁

67.36𝑁𝑁
425.3𝑁𝑁

y

x

0
−436 𝑁𝑁

Finally check 𝐿𝐿 + 𝐷𝐷 + 𝑊𝑊

67.36𝑁𝑁
425.3𝑁𝑁 + −67.36𝑁𝑁

10.7𝑁𝑁 + 0
−436 𝑁𝑁

67.36N − 67.36N
425.3N + 10.7N − 436N = 0

0



Today we discussed:

• The formulas used in flight related to navigation and aircraft 
performance.

• Learned how to calculate the glide slope using trigonometry.

• Vector components and forces in vector form

• Learn about the proportionality of the drag and lift coefficients, and 
how they are then related to the glide slope.

Glide Slope II 
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